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ABSTRACT

An algorithm is presented for computing In z with complex arithmetic,

by extending to the complex plane Carlson's treatment of a classical iteration

using arithmetic and geometric means. Although not competitive with current

techniques which handle the real and imaginary parts separately, the algorith

may be useful in special purpose applications. A detailed analysis of

convergence, scaling, and roundoff is given. Standard identities and somn

minor bookkeeping allow the evaluation of inverse circular and inverse

hyperbolic functions. It is also shown that the basic procedure is related

to certain real algorithms.
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SIGNIFICANCE AND EXPLANATION

Complex logarithms are usually computed with real arithmetic,

ln(x + iy) =  1 in(x2 + y2 ) + i tan 1 (y/x)
-2

using the real In and real tan functions available in high level programming

languages. This report studies a novel approach, based on complex arithmetic,

obtained by extending to the complex plane a known real alqorithm. The- strategy

consists of a basic iteration, which uses one complex square root per cycle,

accelerated by Richardson extrapolation, a speeding-up process well-known to

numerical analysts. With proper scaling of the argument, the accelorated

procedure requires four complex square roots for accuracy to 10 decimals

(compared to eighteen complex square roots in the non-accelerated case).

Standard identities such as

cosh z = I(z z - 1)

-1 -1
Cos z = i cosh z

Otc.

and some minor bookkeeping to account for principal branches, allow the evalua-

tion of complex inverse trigonometric functions. The report analyzes the

algorithm with respect to scaling, convergence, and stability, and it relates

the algorithm to other procedures, includinq classical methods for calculatina

the c-onstant z. Fince complex square? roots are done at the software level , and

thus costly in machin,, time, the algorithm is not competitive with standard

methods handli:; tht. r.a] and Imaqinary parts sepa,-irately with real arithmetic.

However, it, s;:-u']i.:itv trid stability :ould make it attractive for imi~lementatior.

in rni,-roc-od or roed erIy m'mory in cpci, I purpos, applications req riirq

extans w, u. - :, of 1, ,m:: ,orl,,x func tions.

r t W., r. i i' vt :i r w,, -d , t h i s ri-c r1 tIv e
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EVALUATION OF COMPLEX LOGARITHMS AND RELATED FUNCTIONS

+
George J. Miel

1. Introduction. Logarithms of complex numbers are commonly computed

using real arithmetic separately for the real and imaginary parts,

1 2 y2 -1

ln(x + iy) = l in(x 2 + y2) + i tan (y/x) , (1.11

with suitable precautions to avoid numerical problems; see, e.g., [C, Algorithm

243]. We analyze an algorithm based on complex arithmetic, obtained by

extending to the complex case Carlson's procedure [3]. The strategy consists

of a basic iteration, which uses one complex square root per cycle, accelerated

by Richardson extrapolation. The basic iteration generates one of the sequences

of Borchardt's algorithm [2, p. 499], [4, p. 170]. For real arguments, this

iteration is also related to Thacher's algorithm for inverse cosines [111], to

Viete's infinite product for 7r [8, p. 26], and to the method of equal perim-

eters [8, p. 321. As for the real case, the improvement due to extrapolation

is substantial, the algorithm is reliable and stable, and storage needs are

modest as there are no constants to be saved. Numerical experiments indicate

no serious cancellation leading to loss of significant figures, as sometimes

happens when a real algorithm is extended to the complex case. With an adequate

reduction in the range of the independent variable, the accelerated procedure

requires four complex square roots for 1OD accuracy. Standard identitice- a,-

some bookkeeping to account for principal branches, allow the evaluation

invorse circular and inverse hyperbolic functions. The complex arithmeti2
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provides a unified design for a simple and modular software package. Unfortu-

nately, the complex square roots preclude the algorithm from competition with

the straightforward approach (1.1), which takes advantage of efficient real

elementary functions provided in high level languages. However, the algorithm

might be of interest in special purpose applications implemented in microcode

or read only memory. Certain monotonicity properties of Borchardt's iteration

can be exploited for computation in complex interval arithmetic [i0].

-2-



2. The Basic Algorithm. The goal is to evaluate the single-valued function

in z whose range is {x + iy I- r < y < TI. The rational operations of complex

arithmetic and the principal complex square root are assumed available [;, ety A.

The latter is the single-valued function whose range is

(x + iy I x > 0 or x=0 with y > 01

Recall that

/72 +
vz = z, if z C C (2.1)

We will use the function F(z) = (zcoth z)/w and its expansion

F(z) = a + a z 2 + a z4 + .. + a z 2 m + 0(z 2 m + 2  (2.2o 1 2 m

where a. depends on the Bernoulli number B2j,

a. = - B 2

3 (2j)! w

and where Landau's notation f(z) = 0(g(z)) is adequately defined [7, p. 1561.

In what follows, D = {z IzI > i}.

Theorem. Let z C D and

Z+I 7
0 z n+l n +/ 7,nn0. (2.3)

The numbers n satisfy
n

-n-I " =2 :,24
. ri coth 2 w, n+i 2l n n*

where w in z, 6= -l/n+, -n f i, and the numbers u =
n n+i n n n III

converge to u = I/w with a rate

U ~Un+l 4 (u-u ) + 0(16 -n-) 2.5)

-3-



Proof. For n = 0, O = (ew + l)/(eW- 1) = coth w/2. The relation

a + ib, csch C = Isinh -2 (sinh a cos b - i cosh a sin b) implies that

w/2 C + whenever w c ln(D). Use the identities coth C/2 = coth +

2 2csch , csch2 = coth2 - 1 and (2.1) to get

coth w/4 = coth w/2 + /coth 2 w/2 - 1, w E ln(D).

The relation (2.3) gives n+l = 2 n - i/& n+l The convergence follows from

u = F(2-n- w) and lim F(C) = 1/w. Finally, use (2.2) with m = 1 to get (2.5).
n

The second expression in (2.4) shows that as n increases, n+1 gets

increasingly close to 2 . This fact provides a simple variable precision
n

scheme. A range reduction allows the evaluation of logarithms for machine

representable arguments.

Basic Algorithm. Adequate precision is assumed available. Given z' 0,

proceed as follows to find ln z' correct to d decimals:

1. Factorize Iz'I = 2rx x E [2,4,. Let z = 2-z, .

2. Compute (2.3) with n = 0, 1, ... , N where N is such that EN and

2N-_ agree to d + 1 decimals.
'NN-1-

3. Let ln z' = (2 N ) + r ln 2.

Various range reductions are possible. Instead of the modulus, one can

use la + ibi = lal + IbI or la + ibi = max (lal, Ibl). The code should take

a,--varLtaqe of the multiplications by powers of 2.

Roundoff Propagation. Numerical experiments indicate that the algorithm

is remarkably stable. A simplified analysis shows why. Consider

( 5 , u = 2 -n-
"o o o n+l n n n n

-4-



where f(z) = z + z2 - 1 and n reflects the accuracy of the complex squaren

root routine. Lttting 6 = n-n n n'

6n+l '(n n + n  '(En =  n+l /(&n+l n) "

Since Cn+l 2 n' assume for simplicity that 6 n 26nl, '(En) - 2.

Then EN - N2 N-6 0 2 N , and assuming no error in the multiplication by

-N-1
2 ,we get

S N
uN-u N  -6 + . (2.6)4 o -

The accumulated roundoff is acceptable if the square root routine is accurate

to at least d + 2 decimals. Practice shows that cancellation causes actual

roundoff to be smaller than (2.6).

-5-



3. Richardson Extrapolation. Section 5 shows that {u } is one of then

sequences generated by Borchardt's algorithm [2], [ 3], [4, p. 170]. As for

the real case, (2.5) indicates that successive errors in u are ultimatelyn

reduced by a factor 1/4. In order to speed-up convergence, we extend to the

complex case the treatment of Carlson [ 3].

The procedure is given by

P =u , 0 n < N, (3.1)
on n

P =  + Pk-l n+l - Pk-l,n 1 -< k 5 N
kn k-l,n+l 4k - 1 ' 0 5 n 5 N-k (3.2)

The scheme generates a triangular array,

P00 01l 02 .. P0,N-1l ON

10 P 11 l,-

P 20 P2,N-2 (3.3)

PNO

in which the arrows illustrate the dependence of Pkn on Pk-l,n and Pk-l,n l"

n+l
Recall that for z C D, u = F( ) -*u = 1/w, = w/2n n n

Let 4kFk - (r) - (2)F0 () = F( ), Fk( ) =  k -

4 - 1

Then (2.2) implies that

2k+2 0(,2k+4
F ( u u+b +O

k-6-



where bk is a constant. Since n 2 n+l' we have P kn F ( n+k) Consequently,

Pkn - u = 4- (k + l ) (k+n+l) bkw2k+2 + 0(4- (k+2) (k+n+l)).

Thus, the errors in successive elements of the k-th row of (3.3) are each tim(:

roughly reduced by a factor 4
- (k + l)

Error Bounds via Interpolation Theory. Let f(z) = F(/z) = (/-z coth / z)/w

and z =2 = w 2/4 n+ (3.2) is the Neville scheme for evaluating polynomials
n n

with

Pkn = value at z=0 of the polynomial of degree - k

which interpolates f(z) at z , zn+lF .1 Z+kn nl

see Brezinski [i, p.26]. The function f(z) is analytic for Iz < Tr2

Theorem. If u = 1/w, w = In z, and

1 < 1 < /3 (3.4)

then

lU - PknI < 2- (k+l ) (k+2n+l) wI2k+lI- 2 + Tr. (3.5)

2ir
Proof. Let a = 2- and let C" denote the square with vertices

a(tlDi). We first show that

max lcoth zi 5 coth a. (3.6)
zEC"

For the side z = a + iy, -a < y < a, we get

1coth z 1 5 le a+iy + le-a-iyI = e + a = coth a.
i oea+iYi e-a-iy a -aiy - elil e - e

ia _1
For z = x + ia, -a - x < a, use e = -(-1 +i/3) to obtain

2

-7-
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C9 -S2 + a 2 2is

/20

*a/2

S2 a 2 +2iasa T

F'TC r [Th tirnatr maxift cOth /tj for t F C' rather thar, C usiw l hdl

/t is then ori tho square C".



tanhx- i/3 (tanh x + 3

Similarly for the other two sides. The function *k(x) reaches its maximum at

x=ta. Since -(±a) 4 coth a, we get (3.6).

Now, let C denote the union of two semicircles of radius 1/2 and centers
2

wat 0 and z0  respectively, and two parallel segments as shown in the

figure. Consider also the union of two partial parabolas,
2

C' = {i(s - a + 2ias)I -a - s - a}.

The curve C' is inside the circle of analyticity and (3.4) implies that C

is not outside C'.

By a classic result,

(-llk+l Znzn+l ''zn+k (3.7
u- 27 i w

where

f-/ g(t) dt g g(t) =/t coth /t.
C t (t-z n ) . (t-zn+k )

But

jI -< 2k+2( 2 1  1 + 7T) M, (3.5

where M -a g(t)[ . We have

Va g(t) I < a , I g(t) = ma, Ig(z2) 2 / a coth a 0.972

where we used (3.6). To complete the proof, take M = 7 and use (3.7) and

For the range reduction described earlier, (3.4) is satisfied and

jw < Iln 4 + iTTI. For accuracy to d decimals, set the bound in (3.5) no

1 -d
greater than 110 and thus obtain:

2I

-Now U"1r'



Non-accelerated case (k=0,n=N) N 1.66 d + 2.48,

Accelerated case (k=n = N) N t /1.11 d + 1.66- 0.07.

Actual computation shows that 1OD accuracy requires N 
= 18 in the non-accel-

erated case and N = 4 in the extrapolated case. The acceleration defined

by (3.1) and (3.2) is easily coded. The code should take advantage of the

multiplications by powers of 4. Variable precision is possible by

a priori specification of N or by on-line comparison of PNO and

PN-1,1'

Roundoff Propagation. If the values in the first row of (3.3) are

contaminated with errors whose magnitudes are less than e, then the errors

later in the extrapolation have magnitude which nowhere exceed 2c. Combining

this with (2.6), we get

IP NO-NO 1  12 0 + + 1 ,

where P is the computed value of P and C is the accumulated roundoff
N

in the computation of (3.2) . The major term is - 6 and the extrapolation
2 0

is well-conditioned provided that the square root routine is of good quality.

-1(



4. Inverse Trigonometric Functions. The table below specifies for each

function a bijection between the domain and given range.

FUNCTION RANGE

In R1 = {a+ibl - T b < Tr

cosh- 1 R2 = {a+bI -T < b < 0 or b = -T, 0 with a Z 0}

sinh-1  R3 = {a+ibj -7r/2 < b < 7r/2 or b T+ /2 with a > 0'
1

tanh -  R 4 = R -1 -iTr/2}
4 21

Cos iR2

sin iR3

tan -iR4

The following procedures use standard identities to evaluate the functions.

Algorithm for w = cosh z. Algorithm for w = sinh z.

w'=ln(z+/?1)=a+ib. w'=ln(z+z2-+l)=a+ib.

If b>O then w=-w'. If be [ -TT,-Tr/2) then w=-ir-w'.

If b=-7, 0 and a<0 then w=-a+ib. If bc(7T/2,Tr) then w=ilT-w'.

Otherwise, w=w'. If b=-±7/2 and a<0 then w=-a+ib.

Otherwise, w=w'.
-i -i

Algorithm for w = cos z. Algorithm for w = sin z.

w= icosh-1 z. w= i sinh -1 (-iz) .

Algorithm for w = tanh z. Algorithm for w = tax, z.
1 (l+z.-

z -+l, W= I in -z) .zii, W= -i tanh- I"

-i -1

In the case of cosh and sinh , some logic is needed in order to choose

the value in the specified range, since these functions are double-valued

in the range of in, F 9, p. 4171.

•-11
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5. Connection with Real Algorithms. For real arguments, our accelerated

procedure is exactly equivalent to Carlson's treatment of Borchardt's algorithm

* .. The non-accelerated procedure is related to Thacher's algorithm [I11 for real

inverse cosines and to classical methods for calculating 7T.

Borchardt's Algorithm. If U_l, V_1 > 0 then the sequences

Un+ =(U+V), V =/iu v, n - , (5.1)
2+ n n n+l n+l n

converge monotonically to a common limit B(ul,Vl) E21. We show that

u = 2-n 1 n+l =  n+ / i +  i (5.2)
n n n~ n n- 1-1

Get the invariant 4n+l(2 - 2 2 c and then substitute v= 
(u2 - 4 -nc) 1/2

n+l n+l n n

in the first relation of (5.1). Our basic algorithm generates (5.2) corres-

ponding to B z2+1 2z 1z2-- 2 =n z

Thacher's Algorithm. If R =  /-2z+2,R + = /-R-2 then t = 2n n 2

1 nl n n n-i -

converge to cos z if IzI < 1 and to cosh- z if jzi 1, [11. It turns

out that t is the reciprocal of v generated by (5.1) with proper u 1 and v-l.n n1

Method of Equal Perimeters. If i > 2 then

B[- cot C csc =

un = cot = radius of inscribed circle in a regular

2 n+1 - gon of perimeter 2.

Descartes worked with w = 4, [8, p.321.

-12-



Viete's Infinite Produt._ I g-1 2 g ' 2 +2 ,2 q 9n =

then lim(g_ 1g90 -. 9g n 4/Tr, [8, p.26 1. We have g_1g 0 - g n v n wher- vn

corresponds to BC1, /2) =1/sin-

-13-
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